
1 

1 Creating a Simkit Simulation Model 
After Simkit is installed and verified to be on the classpath, you can start writing Discrete 

Event Simulation (DES) models in Simkit.  Simkit is designed to make it simple to create 
working simulation programs from an Event Graph model that has been constructed.  Thus a 
Simkit DES program is simply the implementation of an Event Graph model.  The model itself is 
an abstraction; there are many platforms on which an Event Graph model can be constructed.  
However, Simkit makes the process straightforward. 

The first step, of course, is to have an Event Graph model developed.  If the Event Graph 
model is relatively small (fewer than 20 events, say), then the entire model can be written as one 
class.  For more complex models, a component design works best, however, and the model may 
be constructed using several classes and instances.  Simkit provides the SimEventListener pattern 
to facilitate component design, but for now let’s confine ourselves to a monolithic (single -class) 
approach. 

Start by subclassing simkit.SimEntityBase , which provides the important methods 
that allow creation of the model.  Each part of the Event Graph model may then be “mapped” into 
Simkit code by means of Table 1 

2 Event Graph Model and Simkit 
Table 1 below shows the relationship between basic elements of an Event Graph model 

and the corresponding Simkit implementation. 

Event Graph Simkit 
Parameter Private instance variable, setter and getter 
State Variable Protected instance variable, getter, no setter 
Event ‘do’ method 
Scheduling Edge Call to waitDelay() in scheduling 

event’s ‘do’ method 
Run Event reset() method to initialize state 

variables; 
doRun() method to fire PropertyChange 
events for time-varying state variables 

Events scheduled from Run event Calls to waitDelay() in doRun() 
method 

Table 1. Relationship Between Event Graph and Simkit Model 

The Simkit convention is that all state transitions are accompanied by firing a 
PropertyChangeEvent.  If the state variable is a time-varying one (such as “number in queue”), 
then it should use the three-argument form for firePropertyChange(), where the arguments are 
name, old value, new value.  Otherwise (for example, “time in the system”), the two-argument 
form should be used, where the arguments are property name, new value.  Note that the name of 
the property is not necessarily the same as the state variable.  Also, firing a PropertyChangeEvent 
by itself does not cause a state variable to change. 


